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@1 Introduction

This paper addresses the problem of using grouping to improve existing approaches to
model-based visual object recognition. Many of these systems, such as those of Bolles and
Cain[2], Ayache and Faugeras[1], Goad[5], and Grimson and Lozano-Prez[6], approach this

task by searching through a large number of matches between edge features found in an
image and the features of the corresponding object models. Capitalizing on the fact that

specific contours of objects, such as their perimeter, often produce intensity edges in an
image, they search through the space of matches between image edges and modelled object
contours until a large set of image edges are found, all of which could have been produced

by the contours of a single known object. Along the way, they use these matches to find

the location of the modelled object in the image.
This paper discusses a grouping system that complements such an approach to object

recognition. This system finds collections of image edges especially likely to all come from a
single object, without reference to known objects. This focuses the search on those matches

most likely to lead to a correct solution. This grouping system works on images in which
objects produce distinct occluding edges, including images of curved, three-dimensional

objects.

Lowe[16] has already explored this approach. His system forms small groups of edges

that have some special property, such as parallelism. This paper describes an extension
to his approach to grouping. We develop a method for evaluating the likelihood that any

collection of edges comes from a single object. This allows us to form useful groups when

edges have no special properties, and to expand groups when necessary.
Figures 1 through 4 show the performance of our grouping system on images of two-

and three-dimensional objects. In Figures 1 and 2 the grouping system combines with
a recognition system to find five two-dimensional objects after considering only fifteen
different groups of image edges. This contrasts markedly with most recognition systems,

which might search through thousands of combinations of edges before locating an object.
Figures 3 and 4 show the performance of the grouping system alone on an image of

three-dimensional objects. We have not implemented a 3d recognition system. However,
we can see that the grouping system generates similar, useful groups when applied to this

image. This suggests that grouping can also produce speed-ups in the recognition of 3d
objects.

We do not attempt a perfect, bottom-up segmentation of an image into its component
parts. Instead, we rely on the interaction between a system that forms likely groups, and
a model-based recognition system to speed up the recognition process even when we form

many incorrect groups.

The heart of the grouping system consists of a method of estimating the probability that
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Figure 1: Recognition ii>II1,g 'ePiiping. In the tipper left corner is a picture of objects cut

out of paper. The upper righ~t shows line approximations to the edges found in the image.

The lower left shows hOw~ou of convex edges found that contain four or more lines longer

than ten pixels. The lo%%e(r rI-141t shiows the three objects found by indexing into a data base

of sixteen objects (slinwi ii M igure 13) using individual groups. Some big groups contain

edges that all come fr-on i a ,i'tl ob 0)ject, hut do not lead directly to the recognition of that

object. That niaY 1w Iw I~ those edges do not provide enough informat;-r or contain

edges detected withI too niic 1 oror. ( con tiniied in Figure 2.)
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Figure 2: Next, the grouping system selects pairs of convex groups of edges for indexing.
The top pictures show the first two pairs chosen. The next two pairs each match a single

object. So, after indexing with eleven large groups of edges, and four pairs of convex groups,

the system has found five of the eight objects in the image.
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Figure 3: These p1 im- Thow comparable performance on a complex image of three-

dimensional objects. () ir- '\,I, (ein cnnot recognize these objects, so we simply show the

groups of edges selec*t~ 1. -ii ping. fit fie ht uper right are line approximations to the edges

found( in the inwage on hol 11ii t it lower left shows the con vex groups that contain founr

or more edlges. i 11(1 ml front thIe telephione, apple, umbrella, mug and tupperwvare.

On the lower righit lamd. ;nd )it Figuire 4I, we show the first five pairs of convex groups of

edges chosen by I Ie( go I.w p] 1" ]111 blle.
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Figure 4: The second through fifth pairs of convex groups chosen by the grouping systemn,

from the image in Figure 3. The groups on the left each come from a single object, the

hammer and the phone cord. The group on the upper right has edges from the sandwich

and phone cord. The edges in the lower right come from the folds and stripes of the sweater.
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two convex contours came from the sane object. This method uses the distance separating

the two contours and their relative orientation. It compares the likelihood that this distance
and orientation would occur between two randomly oriented contours from different objtct s

to the likelihood of this distance and orientation occurring between two contours from the
same object. This produces an ordering on all pairs of contours.

To test this grouping module, we have used it in a recognition system called GROPER

(GRouping-based Object PERception). GROPER recognizes objects that appear at a fixed

scale, from a library of two-dimensional, polygonal shapes. With GROPER we measure the

benefits provided to a recognition system by our approach to grouping, but the grouping

system works in a more general domain.

Using grouping has improved recognition in two ways. First grouping reduces the
amount of computation needed to recognize objects. With GROPER we found reduc-

tions in computation of between a factor of 100 and a factor of 1,500 over an identical

system that did not use grouping. Second, and more surprisingly, grouping can result in

greater accuracy. Since this result may seem puzzling, we discuss it in detail in Section 5.

The next section discusses some previous research on grouping and object recognition.

Section 3 will describe the grouping system used in GPOPER, and provide some theoretical

justification for it. Section 4 will briefly discuss GROPER's recognition component. Finally,

Section 5 will provide the results of tests of the system.

Jacobs[12] presents GROPER in more detail, but with fewer experimental results. It

also discusses the psychophysical implications of this work.

2 Previous Work

Psychologists did much influential research on grouping before its recent use in machine

vision. Lowe[161 provides a useful summary of this work, and Kohler[15] discusses the

origins of this work by the Gestalt psychologists.

Witkin and Tenenbaum[27,[28], suggested the use of grouping in a computational frame-

work. They argue that when sections of an image share properties unlikely to occur by

chance, this indicates a probable causal connection. For example, two irregular but parallel

curves in an image might be tracks from a rake, but are unlikely to be unrelated.

Lowe has successfully incorporated grouping into an object recognition system. His

system, SCERPO, capitalizes on two advantages of grouping. First, he groups together

edges thoughc particularly likely to come from the same object. For example, Lowe argues

that nearby parallel edges will more often come from the same object than from randomly

oriented edges. Second, SCERPO looks for groups of edges that have some property in-

variant with the camera viewpoint. For example, three edges that terminate at a vertex

will do so regardless of an object's orientation. So, SCERPO needs to try matching three
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co-terminating image edges only to triples of model edges that co-terminate. Such matches

generate relatively few hypothesized object positions.

This paper discusses a generalization of this approach to grouping. Like Lowe, we

attempt to analyze the image formation process to determine which groups of edges will
have the greatest likelihood of coming from a single object. We extend Lowe's work by

providing a general grouping system that can form arbitrarily large groups of edges that

do not necessarily have some special property such as parallelism or co-termination.

Many other recognition systems have used more ad-hoc methods of grouping than

Lowe's. We will discuss two types of recognition systems, constrained search and align-

ment. Constrained search recognizes objects with a backtracking search through the space
of all mappings between image and model features, looking for consistent ones. Some sys-
tems may explicitly calculate a transformation of the model that best aligns it with the

image features at each node of the search tree. Or, they may save time by only looking
at the palrwise consistency of matched features. Goad[5], Bolles and Cain[2], Brooks[3],

Grimson and Lozano-P 6rez[6], Van Hove[25] and others perform constrained search.

Grouping may tell us which parts of the search tree to explore first, or allow us to
prune sections of the tree in advance. For example, Grimson and Lozano-Prez cluster

matches between image and model features into groups using the Hough transform. This
allows them to start with the most promising clusters, and to avoid some collections of

matches that could not lead to a correct answer. Bolles and Cain develop hypotheses by
only considering sets of matches in which all the image features are nearby. Brooks groups

together edges that all appear to come from the same generalized cylinder, partly to reduce

the amount of search needed.

Grimson[8] has shown the importance of grouping to constrained search. He shows
that the expected complexity of his system, using edges that all come from one object, is

quadratic. But the complexity of recognizing objects in an unsegmented, cluttered environ-

ment is exponential in the size of the correct interpretation. Grimson and Huttenlocher[9]
similarly show that the Hough transform becomes inaccurate in cluttered domains without

grouping.

Alignment approaches work by matching a few image features to model features. Each

match suggests an hypothesis about the location of the object model in the image. Some
systems then perform a verification step on each hypothesis. Ayache and Faugeras[1],

Lowe[16], and Huttenlocher and Ullman[1 do this. Other systems cluster the hypotheses
and pick the location of the object that the most hypotheses support. Thompson and

Mundy's[21], and Tucker et. al.'s[22] systems takes this approach.

As previously mentioned, Lowe uses grouping to focus on only some collections of image
edges, not considering others. Huttenlocher and Ullman[1l1] also use some grouping to focus
first on collections of image features that seem likeliest to come from the same object.
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Past systems have used these approaches to grouping because of the speed-ups that

grouping brings. Grouping becomes even more important as we address more complex

domains. The recognition of non-rigid objects requires greater search than the recognltion

of rigid objects, as Grimson[7] and Ullman[24] discuss, and using a library of objects requires

more search than looking for a single object. However, grouping need not grow any more

difficult under these conditions, because a bottom-up approach, like GROPER's, does not

depend on the properties of the objects sought.

GROPER's recognition system handles libraries of objects. Several previous systems

have also addressed this problem, including Knoll and Jain[14], Kalvin et. al. [13], Tur-

ney, Mudge and Volz[23] and Wallace[26]. Wallace's indexing system closely resembles

GROPER's, but does not take error or occlusion into account. Kalvin et. al.[13] have used

an indexing system developed by Schwartz and Sharir[20] that handles distinctively curved,

continuous sections of object contours, but does not combine information from unconnected

sections of an object's perimeter.

3 How GROPER performs Grouping

This section describes how GROPER decides on the likelihood of a particular group of
edges coming from a single object. But we first outline GROPER's recognition system to

explain what tasks the grouping module must perform.

GROPER begins by locating edges in an image using the Canny[4] or Marr-Hildreth[17]

edge detectors, and approximating these edges with lines. Next, it finds connected, or

nearly connected lines that form convex curves. Convex groups are likely to come from

a single object, and provide useful primitives for further grouping. Some convex groups

may allow direct recognition of an object, but most are not distinctive. So GROPER
calculates a measure of the likelihood that a single object produced the edges in each pair

of simple groups. From this GROPER determines the order in which it considers these

pairs. Sometimes a pair of simple groups may match a large number of known objects. In

this case, GROPER needs to know about more groups that go well with these two.

When GROPER finds ait object it removes from future consideration all image edges

matching that object. This simplifies the grouping needed to find additional objects.

This approach to recognition means that grouping must perform three tasks. It must

find simple, convex contours. It must determine how likely any pair of convex contours is

to come from the same object. And it must extend these pairs of contours when necessary,

by adding additional convex contours.

The fact that GROPER uses grouping as part of a search has an important implication.

Grouping need not work perfectly. If GROPER tries a pair of convex contours that do not

come from the same object, this group will not lead to a verified hypothesis, and GROPER

8



Figure 5: Left: some straight lines. Right: the convex groups they form, circled, and offset

slightly from their original position.

will try another. We aim to reduce, not eliminate search.

3.1 Simple Groups

GROPER forms all convex groups of line segments that meet two criteria: The lines in a

group must have been producible by a convex curve, allowing for a small amount of error.

And a line segment is attached to a group only when one of its end points is closer to an

end point in the group than to the end point of any line segment outside the group. This

bridges small gaps produced by the edge detector. Some edges will appear in two simple

groups, and groups may have a single edge. Furthermore, assuming that groups comes from

convec sections of a objects tells us on which side of a group the object lies.

GROPER will form simple groups in which figure and background are reversed, and not

all the edges come from the same object, when one object occludes another. This does not

present a problem as long as each edge also appears in a group with edges from the right

object. Occasionally GROPER fails to put an edge in any correct groups, which means
that GROPER can not use that edge to help it recognize an object. Figure 5 shows an

example of some line segments and the simple convex groups that result from them.

3.2 Combining Simple Groups

GROPER estimates the likelihood that two convex groups came from the same object,

using the distance between two groups, and their relative orientation. By distance, we

9



mean the minimum length of object perimeter that could connect them. We describe

relative orientation later by dividing orientations into three classes. To do this we only use

the first and last edges in each group. We reason that different distances and orientations

will occur most frequently depending on whether groups come from the same or different

objects.

We do not suggest that these are the most important clues -to the likelihood that two

groups of edges came from the same object. For example, the pattern of intensities in the

image between the two groups tells us much, as do parallelism or symmetry. Our goal here

is to understand as well as possible just two pieces of the grouping puzzle before attempting

to combine them with other information.

3.2.1 The Probabilities that GROPER Computes

GROPER calculates the likelihood that two groups come from the same object by esti-

mating four probabilities that influence this likelihood: P(d01 = 02), P(d0 1 5 02),

P(tld,0 1 = 02), and P(tld,0 1 5 02). d stands for the distance separating the groups,

t stands for their relative orientation. 01 = 02 indicates that the objects that produced

groups one and two are the same. 01 5 02 indicates that the two groups came from

different objects. Bayes' rule tells us that:

P(01 = 021d,t) =

P(dI01 = 02) * P(tld, 01 = 02) * P(01 = 02)
P(dio = 02) * P(tld, 01 = 02) * P(0 1 = 02) + P(dI01 $ 02) * P(tld,01 $ 02) * P(01 0 02)

In practice we can ignore the terms P(0 1 = 02) and P(01 5 02), because we only use

P(01 = 0 21d,t) for comparing different combinations of groups to decide which pair to try

first. To see this, note that:

P(01 = 0 21d,t) < P(O' = 0ldi')

iff P(d01 = 02) * P(tjd,01 = 02)

P(dI01 = 02) * P(tfd, O1 = 02) + P(dI01 $ 02) * P(tld, 01 $4 02)

P(d'fO 0') * P(t'ld', 0 = 0')<=1 21 2
P(d' 10' = 0') * P(t'ld', 0 = 01) + P(d'10 1 5 0'2) * P(t'ld', 0 $ 0'2)

because P(01 = 02)= P(O = 0') and P(0 1 $ 02) = P(O 5 0'). We call this fraction

L(01 = 02), and ;t measures the relative likelihood that groups one and two come from

the same object. To find it, we only need to calculate P(d0 1 = 02), P(tld,01 = 02),

P(dI01 $ 02), and P(tld,01 $ 02).
The next two subsections will discuss the problem of determining these four proba-

bilities. We have examined a simple domain of random two-dimensional objects to gain

10



intuitions about what factors are important in determining these probabilities. These intu-

itions allow us to generate some reasonable hypotheses, whose true test is their empirical
performance on real images. Even an analysis of a simple domain reveals that L(01 = 02)

depends on characteristics of the scenes we view such as the number of objects that appear

in scenes, and their sizes. If these factors were crucial, we would need to tune parameters of
the system for different types of scenes. In Section 5 we use two methods to show that this

is not the case. First, we successfully test the system on images that have a wide variety
of characteristics. Second, we test the system with a variety of parameters, and show that

the system's performance is not sensitive to these variations.

3.2.2 Distance

To determine P(d0 1 = 02) we must understand what causes some distance to separate two
groups of edges that come from the perimeter of the same object. Examining the lengths
of occlusions of objects tells us about one common cause of this separation.

Different collections of objects produce occlusions of different lengths. We have tried
running GROPER using different assumptions about this distribution, but to get an idea

of which distributions to test, we have done two things. First, we have generated occlusions
by randomly positioning random polygons. Second, we have found analytically the lengths

of occlusions produced by randomly positioned circles.
As explained in Appendix A, we generated random polygons with different numbers

of convex parts. We then randomly oriented these objects within a rectangle, producing
occlusions, and measured the distance between the beginning and the end of each occlusion.
Figure 6 shows that short occlusions occur much more often than long occlusions, and that
the number of points of concavity in an object does not seem to influence the lengths of

occlusions much.
To find a different distribution worth considering, we found the lengths of occlusions

that occur when we randomly locate in the plane circles of random radii. Integral geometry
tells us that of all convex shapes, circles produce occlusions that maximize the expected

amount of object perimeter covered up (see Santalo[19], for example). This suggests that
circles will produce an extreme case: the longest occlusions. Appendix B shows that for

circles:

P(lengthof occlusion = D)=

-8 _ L 2 D 2 sh - 1_ -D 42 1 1
S -cosh (__ _ cosh -

4 8 1 V1_ 2 ~2 4D4

Figure 6 graphs this distribution.
We can see that circles produce a distribution different from random polygons, btit

with a similar shape. This provides us with a reasonable range of possibilities. For most

11
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Figure 6: The four graphs on the left show the lengths of occlusions that occur from

randomly intersecting random objects. On the right is the distribution resulting from

randomly intersecting circles.

experiments, we use P(dI01 = 02) = (MazD - d)2 , with MazD, the maximum object
diameter, equal to 300 pixels. This function has a shape between that of occlusions caused
by circles and occlusions caused by random objects. We also tested GROPER using the

distribution of occlusions caused by circles.

GROPER estimates P(d0 1 9 02) by combining two possibilities. The groups may

be randomly located within the image, assuming that different objects have independent

random locations. Or, the location of the end points of the two groups may stem from a

single cause.

If the two groups have independent locations, we can think of this problem as one of
randomly placing two line segments, each with end points a and b, in the plane. We then

take the minimum of the distance between the two points marked a, and the two points

marked b. For short line segments, this distribution increases linearly with the distance.

So, GROPER estimates this distribution as:

2rd 2d
irMaxDiameter2  MazDiameter2

for d < MaxDiameter.

Alternately, two groups of edges from different objects may not have independent lo-
cations. Consider a simple case. The end point of one group may result from the other

group occluding it. Suppose the two objects have the same reflectance. Then the edges

produced by the two objects will terminate at the same place, with a point of concavity

separating the edges into two simple groups. Two factors will influence the impact of such
an occlusion: the probability of such an occlusion, and the distances between the groups

12



when such occlusions occur.

We linearly combine our previous analysis with an analysis of two groups formed by

a single occlusion, using the probability of such an occlusion occurring. In the case of an

occlusion, one of the groups ends where the other begins. So the distance between them

equals zero, unless something else occludes them both. If that happens, the distribution of

the distance between the two groups will depend on the length of the second occlusion, a

distribution we have already analyzed. So we use the following estimate:

2d
P(dO1 $ 02) = k * P(dI01 = 02) + (1 - k) * M d

MaxDiameter2

where k is the probability that two groups of edges from different objects intersect. We

used a value of k = .2 as a default, also trying values of k = 0 and k = .5.

3.3 Orientation

To analyze the effect of orientation on the likelihood of groups coming from a single object,

we divide orientations into three categories. We say that two groups have a type1 rela-

tionship if they could come from a single convex section of an object. They have a type2

relationship if they do not have a type1 relationship, but could come from adjacent convex

sections of an object. They have a type3 relationship otherwise. This description proves

useful because it makes it easy to reason about objects in terms of their convex parts. Many

natural objects have a few convex parts, and much of our perception of objects seems to

occur in terms of their convex parts (see Hoffman and Richards[10]).

Another way to think about types is to consider what we will call the projection of

a group. Intuitively, projection refers to the area pointed to by a group of edges. More

precisely, consider the following three half-planes. First, the line defined by the beginning

and end points of a group forms a half-plane that does not include the group. Second

and third, the first and last lines in the group define half-planes that include the edges of

the group. We call the intersection of these three half-planes the group's projection. Two

groups have a type1 relationship if each group falls in the projection of the other. They

have a type2 relationship if their projections intersect.

To estimate the likelihood of different types occurring we look only at four variables

that describe the beginning and the end of each group. 11 stands for the distance between

the beginning and end of group one, and a, for the angle between the first and last lines

in group one. We define 12 and a2 similarly for group two. Figure 7 shows an example of

these four variables, and two others, int, and int 2 , that we will use later.

We now obtain estimates for the two likelihoods:

L(tjd, 01 = 02) = P(typelll, 12, a ,, a 2 , d,0i = 02),

L(tld,01 $ 02) = P(typelll,12,a,,a 2 ,d, 0 1 $02)

13
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Figure 7: Two groups with a type2 orientation, and the variables that describe them.

and use these likelihoods in place of P(tld,01 = 02) and P(tld,0 1 # 02).

These two likelihoods do not exhaust all sources of information about the influence of

relative orientation on the probability that two groups came from the same object. For ex-

ample, the fact that two groups have a type, orientation does not fully describe their relative

orientation. And we would need P(lI,1 2 ,al,a 2jd,01 = 02) and P(l, 12 ,al,a 2 Id,01 $ 02)

to compute P(tld,01 = 02) and P(tld,01 0 02), information that could be used in group-

ing. We have considered the probabilities of different types occurring because these seem

the most easily understood, and the most useful.

We determine these probabilities for each of three possible types. We start with the

probability of types occurring when 01 = 02. For each type, we divide the probability

into three parts. What if the two groups actually come from the same convex section of an

object (abbreviated "same")? What if they come from adjacent sections (adj)? What if

they do not (notadj)? This creates nine subproblems.

Many of these nine problems have simple answers. For example, P(type3 jadj, d, 11, 12, a1,

a 2 , 01 = 02) equals 0, since if two groups come from adjacent convex sections of an object,

they can not look as if they could not come from adjacent convex sections. Two other

probabilities also equal zero, while P(typel same, d, 11,1 2, al, a2, 01 = 02) equals one.

P(typelId, 11,1 2 ,al,a2,01 = 02)

= P(typel,sameld, ll,12 ,a1 ,a 2 ,0 1 = 02) + P(typel,adjld, 11 ,12 ,a,a 2 ,01 = 02)

+P(typel, notadjld, 11,1 2, a,, a2,01 = 02)

= P(typelsame, d, l,1 2 ,a1 ,a 2 ,0 1 = 02) * P(sameld, 11,1 2 ,a,a 2 ,01 = 0 2 )etc....

However, probabilities like P(sameld, l,1 2 ,ai,a2 ,01 = 02) will depend on the nature of

the objects we expect. As before, we handle this by trying different sets of values for these

probabilities to show that performance will not depend too delicately on the values we

choose. As a default, we set P(sameld, 11,1 2 ,a,a 2 ,01 = 02) = P(adjld, 11,1 2 ,ai,a2 ,01 =

02) = P(notadjld, 11,1 2 , (11, a2, i = 02) = 1, but we also tried setting each probability to
.5, while setting the remaining two to .25.
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Figure 8: Two groups with a type1 relationship. "t" represents the aspect the right group

presents to the left. "a" is the angle of projection of the first group. The probability that

the second group falls in the first's projection is approximated by E-Ut

We still must find the distributions of the probabilities that do not have obvious val-

ues, such as P(typeladj, d, l, 12,ai,a2,01 = 02). To do this with a simple analysis, we

assume that the convex groups from an object have independent, uniform random orien-

tations. Since we also assume that groups from different objects have independent, uni-

form random orientations, this tells us that: P(typeinotadj,d,l1,12,a 1,a 2,01 = 02) =

P(typeilnotadj,d,11,12,al,a 2,01 0 02), for i = 1,2 or 3. But groups from adjacent convex

sections of an object can not appear to come from non-adjacent convex sections, telling us:

P(typeiladj,d,11,12 ,al,a 2,O1 = 02)

P(typeiadj,d,11,12,a1,a 2,01 0 02)

P(type1jadj,d,l1,12,a 1,a 2,01 # 02) + P(type2ladj,d,ll,12 ,a1,a 2,01 02)

fori= 1 or 2.

We now consider the orientations produced by randomly located groups of edges when

01 $ 02. To estimate the probability that group one falls in group two's projection,
GROPER subtracts the angle group one presents to group two, a, from the angle of pro-

jection, 0, and divides by 27r, or uses 0 if a > 0. GROPER determines these angles in two

ways. If group two has an infinite projection, 0 is the angle formed by its first and last

edges, that is a,. a is the angle formed by lines from the first point in group two to the

first and last points in group one. If group two has a finite projection, then GROPER finds
the point, p, where the lines defined by group two's first and last edges intersect. 0 equals

the angle formed by lines from p to the first and last points of group two. To find a, we
rotate group one so that it falls inside group two's projections, without altering its distance

from group two. Then, a is the angle formed by lines from p to the beginning and ending
of group one. If group one does not fit inside group two's projection, GROPER assigns a

zero probability to its randomly falling there. Figures 8 and 9 illustrate these probabilities.
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Figure 9: Finite projection. After rotating the right-side group to fall in the left's projection,

"t" is the aspect the right group presents, and "a" is the left group's angle of projection.

The probability that the right group falls in the left's projection is again *pproximated by
6-t
2w

Next, to find the probability that group two falls in group ape's projection, we assume

this probability is independent of the previous one, and calculate it in the same way. This

allows GROPER to estimate P(typelld,ll,12 ,al,a 2,01 6 02) by multiplying these two

probabilities together.

To find P(type, Id, 11, 12 ,a l ,a 2, 01 02) we look at the simple case where the two groups

have only a negligible size. In this case, we find in Appendix C that:

,- - a, &A~ + !iz~
P(type3J01 0 0 2 ,d,11,1 2 ,al,a 2) = 2

If either group has a finite projection, GROPER uses an angle of for that group.

GROPER finds the probability of tYpe2 occuring usng the probabilities of tyipe, and

type3 occurring.

This approach yields some intuitively satisfying results. For example, the above prob-

abilities imply that, all other factors being equal, groups with a lower type of orientation

have a greater chance of coming from the same object. Figure 10 shows an example.

GROPER uses one more piece of information to evaluate the likelihood that two groups

came from the same object. When they have a type2 orientation, GROPER uses the

distance from the groups to the intersection of their projections. We call the distance from

group one to group two's projection inti, and define int2 similarly for group two. See Figure

7 for an example. The greater these di&LtAc@s, the less the probability GROPER assigns

to the hypothesis that the two groups came from one object.

GROPER uses this information because of psychophysical intuitions. For example,

groups A and B in Figure 11 differ from B and C in that the projections of B and C intersect

closer to the groups. Because of this difference the groups on the left seem to go together

better. Section 5 shows results that indicate that this constraint improves GROPER's
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Figure 10: A and B have a type1 relationship, and seem more likely to come from the same

object than A and C, which are the same, but have a type2 relationship. These go better

together than A and D, which have a type3 orientation.

- C

B

A

Figure 11: Groups B and C seem to go together better than groups A and B. The same

distance separates each pair, but the distance to the intersection of their projections differs

greatly.
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performance considerably. We use these probabilities by multiplying L(type21d, 01 = 02)

by P(int, ladj, d, 01 = 02) * P(int2 ladj, d, 01 = 02), and multiplying L(type2 1d, 01 i 02)
by P(int, Id, 01 5 02) * P(int2ld, 01 5 02).

The likelihood of groups coming from the same object should vary inversely with int1
and int 2, but we do not know at what rate. So, as a default we have used P(intild,01 =

02) = MaxP - d and P(intiId,01 0 02) = 1, normalized to be a probability distribution.
MaxP stands for the maximum diameter of a convex part, which we set to 150 pixels.
We have also tested GROPER using P(intil0i = 02) = (MaxP - d) 2 , and MaxP = 75
pixels. Two things are clear, whichever distribution we try, however. When only a small

distance separates the end points of two groups, then int, and int2 will have low values
for most orientations of the groups, and so provide little information. Hence in these cases,
GROPER does not attempt to use this information. And secondly, when inti exceeds

MaxP, the two groups could not really come from adjacent convex parts, and should be
treated as having a type3 relationship.

3.4 Producing Larger Groups

When two groups do not provide enough information to allow GROPER to recognize an ob-

ject,' GROPER combines other groups with the original two, and estimates the probability
that each triple of groups came from a single object. It does this by taking the maximum
of: L(0 1 = 02) * L(0 1 = 03), L(0 1 = 02) * L(0 2 = 03), and L(0 1 = 03) * L(0 2 = 03).

GROPER does place one restriction on this calculation. Previously, for the distance be-
tween two groups, GROPER used the minimum distance from the start of one group to the

end of the other. We do not want to hypothesize a connection between the start of group

one and the ends of both group two and three. So we use the distance from the start of

group one to the end of group two, and from the end of group one to the start of group
three, and then try it the other way around, using the maximum probability that emerges.

4 Recognition

We now briefly discuss GROPER's recognition component. This consists of indexing and
verification modules. GR OPER indexes into a table that describes the relationships between
all pairs of edges in each model. Verification uses matches between image and model features

to solve for the location of the model, and then looks for additional matches. The entire
system performs the following steps:

1. Summarize polygonal models of all known objects in a look-up table.

2. Make line approximations to all the intensity edges in an image.
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3. Form simple convex groups.

4. For every convex group with four or more edges, perform steps seven and eight.

5. Form a pool of all pairs of simple groups. For each pair, estimate L(01 = 02).

6. Choose the group from the pool thought most likely to have come from a single object.

7. Use indexing to see which model edges might match this group of image edges.

8a. If no modeled edges match the image edges chosen, return to step six.

8b. If only a few sets of model edges match these image edges, perform a verification

step on set of matches. Remove from future consideration the edges matched to a
recognized object, and return to step three.

8c. If a group could match many objects, pair it with all the other groups and add each
combination to the pool. Return to step six, choosing the next five groups to explore

from these new ones.

We have discussed grouping. Edge detection is done using the Canny[4] or Marr-
Hildreth[17] edge operators. Straight line approximations to edge contours are found using
a standzrd technique. We connect the start and end of a connected string of edge pixels
with a line, then break this line at the point of maximum deviation. We then repeat this

process recursively, until each line approximates edge contours to within two pixels (see
Pavlidis and Horowitz[18] for a description of this type of algorithm). In the remainder of
this section we describe GROPER's indexing and verification.

Indexing determines the sets of edges from modeled objects that might have produced

a set of image edges. Verification finds the position of an object in the image using a match
between image edges and model edges. This position then allows GROPER to locate

additional edges the object might have produced.

Since short lines found by the straight-line approximator tend to be quite uncertain
in their angle, GROPER discards all edges less than ten pixels long before attempting

recognition. Grouping does use these edges1 .

Because indexing only guides the recognition process, we do not mind if indexing pro-
duces some false positive matches. Later, verification will perform a rigorous test and reject
them. However, we do not want indexing to miss a correct match, for then we may abandon

a group that could lead to recognition.
1A previous implementation of GROPER discarded short edges before performing grouping. Primarily

because of this, some of the results reported in Jacobs[12] differ significantly from those described in Section
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Figure 12: Two edges are in bold. Five parameters describe their relationship.

GROPER uses an indexing scheme closely related to one proposed independently by
Wallace[26]. We can describe the relationship between two edges with five variables. We

can then fill a five-dimensional array with the values that describe all pairs of edges in
the object models in our library. To find objects that might have produced two edges, we

calculate these five variables and look in the table. For more than two edges, we take the

intersection of the result of a table look up for each pair.

The above account leaves out some details. First, we must worry about sensing error.

GROPER makes an entry in the table for every possible set of variables that each pair
of edges might produce, given some allowed error. Secondly, GROPER uses two ways of

describing the relationship between two edges. If the edges are not parallel, GROPER finds

the point where they would intersect. It then calculates the angle between the edges, and,

for each edge, the minimum and maximum distance from the edge to this intersection point
(see Figure 12). For parallel edges, GROPER uses the angle between the edges (that is 0),
the distance between them in the direction of their normals, the minimum and maximum

distance from the beginning of one edge to the beginning of the other in the direction of

the tangent, and the length of the second edge. Finally, GROPER does not really use a
five-dimensional array. It uses a three-dimensional array of angle, and the distance of each

edge to the intersection point. For a pair of edges, it makes an entry for every triple of

angle, distance from edge 1, and distance from edge 2, that any points on the two edges

might produce. It does this because occlusion might cause only a portion of an edge to

appear in the image. Then to find the model edges that match a pair of image edges,

GROPER combines the results of two lookups, one using the smallest distances from each
edge to the intersection point, the other using the largest distances.

This parameterization makes it easy to check for the global consistency of a match,

not just its pairwise consistency. If we perform a table lookup for every pair of edges

in a group and just intersect the results, we might get a match in which, for every pair

ol image edges s,'me tranisformation of the image will align them with the corresponding
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model edges, but no single transformation exists that will align all the image edges with
the model edges. For more on this point and its significance, see Grimson and Lozano-

Pdrez[6]. The parameterization GROPER uses allows it to keep track, not only of whether
two image edges could match two model edges, but also, of which parts of the model edges
they could match. This allows GROPER's indexing system to enforce global consistency
on the matches it finds. Jacobs[12] describes the method used to do this.

This indexing system allows GROPER to make use of any collection of edges. It also
uses a good deal of space. The amount of space required increases linearly with the number

of object models, and is proportional to the square of the number of edges in each model.

However, the number of table entries GROPER makes for each pair of model edges is quite
large. This is partly because GROPER takes a simple approach to finding the table entries
that does not miss any correct entries but makes many unnecessary ones. As a result, a

table containing sixteen objects that had from six to thirty-one edges each, required over

400,000 table entries. A typical object, with ten edges, required over 14,000 table entries.
This space requirement makes it impractical to use a library with more than about a dozen

objects.

Verification uses the matches produced by indexing to find a rotation and translation
that maximally aligns the model edges of a match with the image edges. GROPER does
this using a technique developed by Grimson and Lozano-P rez[6]. It then looks for image
edges close to the proposed location of the object model. If GROPER can in this way
account for a given percentage of an object's perimeter it decides it has found the object.

Deciding when to perform verification offers a trade-off between accuracy and speed. If
we perform verification when a group of edges matches many model edges, it will take a
long time, but if we do not perform verification we risk the possibility that further grouping
will fail to turn up any additional edges that will lead to a solution. We perform verification

when a group of edges matches five or fewer sets of model edges, but have also found that

a threshold of fifteen matches produces similar results.

5 Results

We test GROPER to measure the amount its grouping system can reduce the computation
needed to recognize objects, and can improve the accuracy of a recognition system. We

measure this for images of two-dimensional, polygonal objects by comparing GROPER's

performance to that of an identical recognition system that does not use grouping. We also
run GROPER's grouping system alone on images of curved, three-dimensional objects. We
find that GROPER's grouping system produces dramatic improvements in the performance
of a recognition system. And, we find that GROPER's grouping system works almost as well

on images of real three-dimensional objects as it does on iniatges of simple two-dimensional

21



objects. This leads us to expect that GROPER could produce similar improvements in the

recognition of three-dimensional objects.

Finally, we vary the parameters of GROPER's grouping system, as described earlier, to

show that the system does not depend on a precise tuning of these variables.

5.1 Recognition

SEARCHER uses all GROPER's code except its grouping module. Grouping orders GROPER's

search through the space of collections of image edges. SEARCHER performs a backtrack-

ing s,-arch through this space instead. Like GROPER, when SEARCHER finds that some

edges do not match any known object, it does not consider any other collections of edges

that include these. And, like GROPER, when SEARCHER recognizes an object it removes

from consideration any edges that this object can explain. Since SEARCHER has no way

to tell the object side from the background side of an edge, it must consider both possi-

bilities in its search, just as GROPER imposes figure/ground judgments on its groups. By

replacing GROPER's guided search with an undirected search, SEARCHER shows us how

much GROPER's grouping component adds to its performance.

We tested GROPER and SEARCHER on three sets of images of increasing difficulty.

First, we used five images of six objects and a library containing models of those six objects.

Then we used a library of sixteen objects. In the second test we used five images, each

containing eight of these objects. Finally, we used three images containing all sixteen

objects in the library.

Figure 13 shows these objects. They were cut out of black paper and placed on a light

background. Figures 14 and 15 show examples of these images and the objects found in

them.

Initially, we used loose error bounds for indexing and verification. We allowed for an

error of seven pixels in the sensed location of an edge, and an error of sin(-) in the sensed

angle between two edges. And, the systems accepted any match that accounted for 25% of

an object's perimeter. We chose these bounds because informal experiments showed that

tighter bounds occasionally caused GROPER to miss an object.

Figure 16 shows the results of these experiments. Occasionally, a system would decide

that a collection of edges could match two or three different objects, and that no additional

edges would narrow down the choice. We counted such a decision as correct if one of those

objects was correct.

Although GROPER performed well on the first two sets of images, SEARCHER per-

formed terribly, often finding in(correct matches that still fit the loose error bounds we had

chosen. To obtain a better comparison we tuned these bounds to optimize SEARCHER's

performance. We ran SEARCHER on the first set of images using 48 sets of error bounds.

Error in distance varied between 7, 5, 4 and 3 pixels. Error in angle varied between sin(-&),
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Figure 13: The perimeters of the objects used in tests. The first set of tests used objects

3, 4, 8, 9, 10, and 14. The second and third sets of tests used all sixteen objects.
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Figure 14: The upper left is a scene from the first set of tests. The upper right shows straight

line approximations to the edges found. The lower left shows the objects GROPER found,

acccounting for 25% of tie object's perimeter, allowing for error of 7 pixels in distance, and

sin-! in angle. On th, lower right are the objects that SEARCHER found.
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Figure 15: An image from the third set of tests. Again, the picture on the lower left shows

the objects GROPER found, and the picture in the lower right shows SEARCHER's finds.

Three hypotheses are overlaid where SEARCHER found three models that explained the

same edges. 50% of each object was accounted for, with maximum errors of 3 pixels and

sin- radians.
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Per- Angle Dist System Test False False Nodes

meter Error Error Positives Negatives Explored

25% sin 11/10 7 pixels GROPER 1 0 .6 8.6

2 1 .6 39.4

3 6.7 6.3 370.3

SEARCHER 1 7.2 3.6 2,621.8

2 9 5 10,202.4

3 16.7 8.6 39,653.7

35% sin 11/15 3 pixels GROPER 1 0 .8 14.6

2 0 1.2 30

3 .7 6 1,098.7

SEARCHER 1 0 0 17,510.2

2 2.2 .6 41,579.2

3 5 2.3 226,031..

50% sin H/15 3 pixels GROPER 1 0 .8 14.6

2 0 1.4 29.2

3 .3 6.7 499

SEARCHER 1 0 .2 19,260.6

2 .4 .4 45,911.2

3 .7 1 252,420.7

Figure 16: This chart shows the average number of mistakes made per image. Nodes

Explored indicates the average number of indexing steps per image.
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Figure 17: On the left, an hypothetical scene. In the middle, dashed lines show an incorrect

hypothesis that accounts for most of a square's perimeter. On the right, an hypothesis that
seems more likely to be correct.

sin(-L), and sin(-). And we tried object perimeter thresholds of 25%, 35%, 50%, and

60%. SEARCHER obtained perfect performance with a distance error of 3 pixels, an angle

error of sin(-5), and a threshold of 35%. Higher thresholds caused SEARCHER to miss

some objects. We ran GROPER and SEARCHER using these bounds on all three sets

of images. These results also appear in Figure 16. Again SEARCHER performed poorly

overall. Finally we noticed that SEARCHER did better with a perimeter threshold of 50%,
so we also ran experiments with that threshold.

We can see that GROPER requires far less computation than SEARCHER. For example,

using the tightest error bounds, SEARCHER performs over 1,000 times as many indexing
steps as GROPER. In Section 5.3 we show that all of GROPER's constraints play important

parts in this reduction in computation.

We will now discuss the effects of grouping on the errors a recognition system makes.
We will spend more time discussing error than speed, since it is a more complex issue. But

the main contribution of GROPER is the speed-up that grouping provides.

These experiments tell us that when we do not have error bounds that separate al-

most all correct hypotheses from incorrect ones, GROPER has much better accuracy than

SEARCHER. This is because grouping allows us to accept hypotheses not just on the basis

of how much of an object's perimeter it accounts for, but also on the basis of how well the

image edges in the hypothesis group together.

Figure 17 illustrates this point. Suppose we are looking for a square among the edges

on the left. The dotted lines in the center picture show one hypothesis, which accounts for

most of the edges of a square. But this hypothesis seems wrong. On the right, another

hypothesis accounts for less of a square's perimeter, but seems correct. This is because the

edges hypothesized on the right to come from a square group well together. The edges in the

center group poorly together, and each edge in the hypothesis groups well with other edges.
In fact, GROPER would only consider the hypothesis on the right, while SEARCHIIER

might try either one first.
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This problem emerges when we select error bounds that some incorrect matches can sat-

isfy. Both GROPER and SEARCHER accept the first matches they find that satisfy their

error bounds. Many other systems do this too, since it greatly reduces computational re-
quirements (for example, Lowe[16], Huttenlocher and Ullman[11], Ayache and Faugeras[1],
and Grimson and Lozano-P rez[6]). But this means that SEARCHER will frequently con-
sider incorrect matches that satisfy the error bounds before finding all the correct matches.

On the other hand, GROPER will first find the matches that satisfy the error bounds and
that also contain edges that group well together.

We found GROPER more robust than SEARCHER as error bounds varied. With op-

timal error bounds, SEARCHER out-performs GROPER because GROPER's grouping
system causes it to ignore some hypotheses. But it proved difficult to choose optimal error

bounds, and they varied between test sets. Moreover, slightly sub-optimal error bounds

produced significant errors in SEARCHER's performance. For example, SEARCHER per-

formed perfectly on the images in test one, allowing a distance error of 3 pixels, an angle

error of sin(-!-), and accepting matches that accounted for 35% of an object's perimeter.

On the second set of five images, these error bounds produced three false negative errors,
and eleven false positive errors. Changing error bounds had much less effect on GROPER's

performance, and GROPER performed well with weak error bounds. This does not tell us
that GROPER performs more accurately than SEARCHER, but that grouping may offer

a way of improving the accuracy of a recognition system.

Furthermore, even though GROPER sometimes makes more errors than SEARCHER,

it always finds fewer false positive matches. False positive matches axe harder to recover
from than false negatives, because we could always follow-up GROPER's work with a more

exhaustive search of the edges for which it can not account.

Why does SEARCHER perform more accurately than GROPER, when they use tight
error bounds? Ironically, most of GROPER's mistakes seem to occur when GROPER forms

a group of edges that all come from the same object, but one of them is sensed with error
exceeding the allowed bounds. As a result, the whole group can not match the object that

produced it. SEARCHER can find the object using just the accurately sensed lines.

5.2 Grouping

We have tested GROPEI('s grouping component by itself on images of curved, three-
dimensional objects. We examined the thirty pairs of simple convex groups that GROPER
thought most likely to come from a single object. This tested the grouping constraints
which form the hoart of (GlOl'lR's grouping system. And the number of correct groups

found gives us an idea of the wimber of objects we might recognize by considering only

thirty groups. Wo also noled th,, total mnImber of pairs of simple groups in each image, and

the total number of corre(t pair.,, allowiog a comparison between GROPER's performance
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Number correct Total number Total number
pairs found Correct pairs Pairs

Two-Dimensional Test 1 7.2 19.6 564.8

Two-Dimensional Test 2 8.4 23.6 1018.0

Two-Dimensional Test 3 6.3 56.3 4547.0

Three-Dimensional Test 1 7.5 45.5 1331.3

Three-Dimensional Test 2 5 59.5 5613.0

Three-Dimensional Test 3 6.7 , 9867.0

Figure 18: The performance of GROPER's grouping system. The six sets of images are
described in the text. For each set, we examined the 30 pairs of simple convex groups that

GROPER picked first. * indicates that these images contained so many edges produced
by lighting effects and complex objects that we could not. accurately count all the correct

pairs of simple groups.

and a random search.

We used three sets of images of three-dimensional objects, and the images of two-
dimensional objects discussed in the previous section. Comparing these results shows that
grouping performs almost as well on three-dimensional images, leading us to expect com-

parable improvements in a three-dimensional recognizer.
Figure 18 displays the results of these tests. There are two differences between the way

we handled two-dimensional and three-dimensional scenes. For two-dimensional scenes, we
counted a group as correct if all the edges came from the same object, and if GROPER

correctly resolved figure and background for each edge. For three-dimensional scenes, we
counted a group as correct only if all its edges came from variations in an object's shape, not

as a result of lighting. In the two-dimensional scenes, lighting variations did not produce
edges. So, edges from an object's perimeter, surface markings, or orientation discontinuities

counted as correct. But if a group contained edges produced by shadows or specularities,
that group counted as incorrect. However, we only looked at figure/ground judgements
when an edge really came from an object's perimeter. Also, for two-dimensional scenes we

smoothed images using a Gaussian with a sigma of 1, dijring edge detection. For three-
dimensional scenes, we found that a sigma of 3 worked better.

Figure 18 shows that for images of two-dinrnsional oi-,,Cts, betwccn 6.3 and 8.4 of
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Figure 19: Above, an image and straight-line approximations to the edges found in it. The

lower left shows the convex groups of four or more edges found in the image. The lower

right shows the first pair of convex groups chosen by the grouping system. These edges all

come from the wrench, but one comes from a specularity. This group would not count as

correct. Figure 20 shows the next six groups chosen.
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Figure 20: The second through seventh pairs of convex groups selected by the grouping

system, from the picture in Figure 19. The second and sixth pairs are correct.
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Figure 21: Above, a picture of two-dimensional objects and line approximations to the
edges found. The lower left shows the convex groups of four or more edges. The lower

right shows the first pair of convex groups chosen by the grouping system, which is correct,
Figure 22 shows the next six pairs chosen.
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Figure 23: A picture of our lab, used in the second set of three-dimensional tests. On the

right are line approximations to the edges found in this image.

the first thirty pairs of convex groups selected by GROPER were right. This meant that

GROPER recognized many or most of the objects in an image with fewer than 30 indexing

steps. For the first set of tests on 3d objects, we formed four images of comparable com-

plexity to the 2d tests. So these hrd six common objects, mostly without texture. Figures

19 through 22 compare GP " ER's performance on one of these 3d scenes with a 2d scene.

On average, GROPEI fn- d 7.5 correct groups in images of simple 3d objects. This means

that some objects pruuuced more than one correct group. This is similar to the results

obtained on conmparable images of two-dimensional scenes. Figures 19 and 21 show the

large, single convex groups found in these images, which axe also important in speeding the

recognition of objects.

Next, we ran the grouping system on two pictures of our lab. Figure 23 shows one of
these pictures. These images contained more pairs of convex groups, and a lower percentage

of correct pairs, than any of the two-dimensional scenes tried. Yet GROPER performed only

slightly less well on these images than it had on the most difficult images of two-dimensional

scenes.

Finally, we tested three images containing non-rigid and translucent objects, obtaining
similar results. Figures 3 and 4 show one such scene, and the groups found in it.

These tests show little difference between scenes of three- and two-dimensional objects.

GROPER did find fewer correct groups when images contained more groups altogether,

and when fewer of these groups were correct.

These results indicate that GROPER could serve as a front-end module to systems
that recognize three-dimensional objects in complex scenes, significantly improving their

performance. For example, litittenlocher and Ulrnan's alignment method can use pairs of

vertices in the image matched to model vertices to locate an object. GROPER could order

pairs of vertices based oi how w'll they group together. Or, we could perform the type of

constrained sear(h that (;risfhj and Jozano-Perez use on subsets of the image data that,
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GROPER has formed into groups.

5.3 Varying GROPER's Parameters

The theory of computation of grouping left some variables and probability distributions
undetermined. We selected values that made intuitive sense, but we must still be concerned
about the sensitivity of the system to these choices. Partly, we have done this by first fixing

these parameters, and then testing the system on the 22 images described above. But
another way to insure that the system is not sensitive to the choice of parameters is by
testing it with alternate parameters.

For each parameter, we have selected a quite different value that also makes reasonable
intuitive sense. We have found that using these alternate parameters makes relatively
little difference. We tried the following alternate values: For P(d01 = 02), we used the
distribution of lengths of occlusions caused by a circle, where originally we used (MaxD -
d) 2. For k, the probability that two convex parts of different objects intersect, we used
.5 and 0, instead of .2. For the maximum object diameter we tried 150 pixels in place of
300 pixels, and for the maximum diameter of a convex part we tried 75 pixels instead of
150. For the a priori probabilities that two convex parts of an object come from the same,
adjacent, or non-adjacent sections, we had originally used I for all three values. Instead,

we used 2 for each probability, with I as the two corresponding probabilities. We also tried
setting P(inti adj, d, 01 = 02) = (MaxP - d) 2 normalized into a probability distribution,
instead of P(intiladj,d,01 = 02) = MaxP - d. Finally, instead of attempting to verify
hypotheses when indexing turned up 4 matches, we used 15 matches as the threshold.

We varied these parameters one at a time, and then all at once. For this final test we
used k = .5 and the original values for the same, adjacent or non-adjacent part probabilities.
We ran GROPER with all these parameter settings on the the second set of images used in
recognition tests. We used error bounds of three pixels for distance, sine5 for angles, and we
required that GROPER account for 50% of an object's perimeter before accepting a match.
We chose these values since they allowed SEARCHER to perform accurately. We reasoned
that if poor choices of parameters harmed GROPER it would still perform accurately, but
would require more computation. This proved true, simplifying the comparison between

different choices.
We also ran GROPER with some of its grouping constraints disabled. We ran GROPER

without a distance contraint, without the intersection part of its orientation constraint,

and without any orientation constaint. Finally, we ran GROPER without any of these
constraints. This final system differed from SEARCHER because it still used small convex

groups of nearly connected edges as its primitives in a sear'h, instead of single lines.
Figure 24 shows the results of these tests. For the most part, alternate parameters

do not make much difference in GROPER's performai"r. Disabling any of GROPER's

35



Average number

Parameters with values different from the defaults of nodes explored

All default values 30.6

Distance distribution for circles 30.2

Distance to intersection constraint squared instead of linear 36.2

Probability parts intersect = 0 31.6

Probability parts intersect = .5 45.8

Max number of hypotheses we try to verify = 15 28.8

Max object diameter = 150 28.8

Max part diameter = 75 29.2

Probability groups same convex section = .5 42.2
probability adjacent = .25, probability non-adjacent = .25

Probability group same convex section = .25 26.6

probability adjacent = .5, probability non-adjacent = .25

Probability group same convex section = .25 32.0
probability adjacent = .25, probability non-adjacent = .5

Distance distribution for circles

Distance to intersection constraint squared instead of linear

Max number of hypotheses we try to verify = 15 29.0
Max object diameter = 150 Max part diameter - 75

Probability parts intersect = .5

Null distance constraint 78.8

Null Intersection constraint 63.6

Null Orientation and intersection constraints 64.8

No grouping constraints 459.8

Figure 24: The results of varying GROPER's parameters.
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grouping constraints had a much greater effect.

The greatest change comes from setting k to .5 instead of .2. Since GROPER s(t.s
P(diO1 $ 02) = k * P(dOl = 02) + (1 - k) * MaxDiameter2 ' increasing k has the effect of

diminishing the strength of the distance constraint (for k = 1, P(dI01 0 02) = P(dOi =

02) and there is no distance constraint). So, as k increases too much the distance constraint
becomes less effective. Since the system works well with k = 0 it seems that k adds an

unnecessary complication to the system.

These results also tell us that each of GROPER's grouping constraints played an im-
portant part in its success. Disabling either the distance or orientation contraints makes

the system significantly slower. Disabling both constraints produces a much slower system,

although searching through the space of convex sections of curves produces faster results

than searching through collections of single edges.

6 Conclusions

This research has aimed at producing a grouping system that can assist in the recognition

of three-dimensional objects in real scenes. Lowe has successfully done this by forming

small groups of edges that have a special relationship such as parallelism or co-termination.

We have attempted to use his basic approach to build a grouping system that orders the

space of all sets of edges. We have done this mainly by adding new orientation constraints

that allow us to estimate the likelihood that any set of edges all came from a single object.

We have built a grouping system, GROPER, using these constraints and found that

it performs well on real, complex scenes of three-dimensional curved objects, and that

comparable performance on two-dimensional scenes can result in a dramatic improvement in

the performance of a full recognition system. We have also shown that grouping can improve

the robustness of a recognition system. In situations where it is difficult to determine

accurate error thresholds, many correct and incorrect object matches may pass our error

bounds. This can occur because error thresholds are hard to determine a priori, and

also because in some images some incorrect matches may account for more of an object's

perimeter than some correct matches, for any error bounds. In these situations, grouping

can provide a means of reducing mistakes, by leading a recognition system to discover

correct matches that pass our error thresholds before it discovers incorrect matches that

also meet our error bounds.

GROPER's grouping system arises from an attempt to understand the way that the
image formation process pro.duces constraints on the location and orientation of image

edges. This analysis has led to some intuitions about what types of constraints can form

* an accurate grouping system. But it is the success of our implemented grouping system

that provides evidence that we have understood some ast,:cts of the way that the world
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makes grouping possible. This success suggests that the simplified world we have analyzed

captures the most important aspects of the real world.

A Making Random Objects

We built random objects out of random convex polygons. We wanted particularly to make

sure that we constructed shapes with a random size, because this seemed like the factor

most likely to influence the size of the occlusions produced by the object. So we selected

the area of the convex shape from a uniform random distribution from 0 to an arbitrary

constant.

To determine the number of sides of a convex shape we picked a number between three
and seven, with each number equally probable.

Then, to construct a random convex polygon, we started with a randomly chosen tri-
angle, and added edges, one at a time, until we had enough. To make a random triangle,

we chose a base with a random length. We then picked a number between 0 and 7r for the

angle between the base and one edge, and a number between 0 and 7r minus the first angle
for the angle between the base and the second edge. To add an edge, we first picked one

of the polygon's edges at random, and removed it. We connected the polygon again by

adding two randomly chosen edges, subject to the constraint that they must maintain the
convexity of the polygon. We then scaled the polygon so that it would have the appropriate

area.

To form an object with a specific number of convex parts, we created each convex part
separately. To connect a convex part to an object, we randomly located each of them in an

image-sized space until they intersected. We then joined them at the points of intersection,

and removed all overlapping material.

B Occlusions Caused by Circles

This appendix derives the probability distribution of the lengths of occlusions caused by
randomly located circles. We assume that the radius of a circle is chosen from a uniform

random distribution between 0 and 1. We then generate occlusions by randomly locating
two random circles in the plane. If they occlude, then the distance from the beginning to

the end of the occlusion is the random variable we describe.

Call the radius of circle one, ri, and the radius of circle two, r2. Without loss of
generality, we can assume that circle one is centered at the origin, and that the center of

circle two is no further than 2 from the origin. Let d be the distance of the occlusion, and
let a be the distance separating the centers of the circles.

We wish to know P(d = D), the density function of d, given that an occlusion occurs.
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We proceed by finding P(d > DIr = Ri, r 2 = R2). Then we integrate over all values of R1

and R 2, and divide by the probability that an occlusion occurs at all.

Suppose rl = R 1 and r2 = R 2. Without loss of generality, assume that R 1 > R2. Note

that when a> R , a - -- + ' /1 T 'V This follows from simple geometry. When
aR ia - - - So, when a= R- E d = D, and when

2 - -D2 d = D. In between these points, d > D. Therefore, d > DI R2--24 42' >a---- 42 2
ifF I?-~ RjD > >Jf~ R - So P(d >DIr = Ri,r2 =R 2 )

equals the probability that a falls in this range.
The area where the center of circle two can fall, creating a value of a in this range

isir( -- 4- R -,)2 (R -)2, and the total area in which
the center of the second circle can lie is 47r. Therefore P(d > Dirt = R1 ,r 2 = R 2 ) =

R1( 2D2 D

P--o-7 R2-dRdR 2P~ ) F24 4
2 2

Note that R, and R2 must be greater than P or an intersection of length D can not occur.

So,

P(d > D) =8 csh-1 2 )2

2l 4 8 D

To find P(d = D) we take the derivative of one minus this figure, which is:

1 D2  D2 os12 1 1 D D 12 1 1
P (d = D ) = - 2( - 4 -co h D 4- - ( )- - co sh T + 4 V - 4,

This is the probability that d = D when the center of circle two falls within 2 of the

center of circle one. But only some of that time will an occlusion occur. So we must divide
the above figure by the probability that an occlusion occurs to find the probability that

d = D given that an occlusion has occurred.

An occlusion occurs when: R1 - R 2 < a < R1 + R 2. That is, when the center of circle

two falls somewhere in an area of size:

ir(RI + R 2 )2 - r(RI - R 2 )2 = 4R 1 R 2

So the probability of an occlusion occurring is: RlR 2, for a given R1 and R 2. Since the
radii can range from 0 to 1, the total probability of an occlusion is:

1 1 1

11 R 2dRdR2 = 1
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Figure 25: Two tiny groups with infinite projections.

C The Likelihood of a type2 Orientation

This appendix derives the probability of a type2 orientation occurring between infinitesi-

mally small groups with uniform random orientations.

We will call the two groups A and B. A and B appear on points in the plane, which

we will also call A and B. If infinite, we will call the angle of A's projection a, and of B's

projection /. Two ray's will bound A's projection. We will call them a, and a2 . b, and b2

will refer to the rays that bound B's projection. Without loss of generality, we can assume

that A lies at the origin, and B lies on the x axis. We will call the angle between a, and the

x axis 0, and the angle between b, and the x axis k. Figure 25 Mustrates these variables.

If either group has a finite projection, we can easily produce an answer. If group A

has a finite projection, then the two groups' projections intersect only when point A lies

inside B's projection. Since B's projection has a uniform, random orientation, it will have

a probability of - of covering point A. Similarly, if B has a finite projection there will

be a probability of - of a tYpe2 orientation occurring. And if both groups have finite

projections, they can not intersect.

Assume that both groups have infinite projections. We will determine the probability

that these projections intersect by dividing the problem into eight different parts. First of

all, we will consider separately the cases when a < Z and when a > Z. Then for each

of those cases, we will divide the possible orientations of A's projection into four groups,

depending on the quadrant in which the ray a, falls.

First, suppose a <

Suppose that 2 < 0 < ir. The projections intersect only when either A falls in B's
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projection, or when b2 intersects a,. This happens if /, - /3 < 0, i.e. if 4 < 0 + '3.

This occurs whenever 4' has a value between 0 and I + fl. Furthermore, since 0 has a

uniform distribution between M and 7r, the projections will also have a fifty percent chance

of intersecting if 4 has a value between M + P3 and 7 + /3. So the total probability of

intersecting projections is:

2r

Suppose that 0 < M. A's projection may fall in one quadrant. This happens when
a < 0. Or, A's projection may fall in two quadrants. In the first case, the projections will

intersect whenever 0 < 0 and 4' - P3 < 0. The chances that 4 achieves an appropriate value

are: (P + . . Furthermore a < 0, occurs with probability 1 - .. So, the total

probability of a being less than 0, and the projections intersecting, is:

W+ 2a + ir 2a 1

(7 T+V

In the second case, when 0 < a, the projections intersect only when b, or b2 lie in

between a, and a2 . This has an 3 probability of occurring. So, over all, the probability21r

that 0 will be less than a, and that the two projections will then intersect is:

(a+ /)2a 2a 2 + 2a/3
2r r 2r2

Combining these two results, we find that, if 0 < Z, the probability of projections

intersecting is:

r a 2 1

Next, suppose a, falls in the quadrant where x is positive and y negative. In this case,

a2 makes an angle of a + (2r - 0) with the x axis. An intersection occurs if B's projection

extends anywhere within this range. This happens if 0 - a < 4. If 4 < /P, then A falls

inside B's projection. So, the total chances of projections intersecting are:

+ a +

Finally, suppose al falls in the quadrant where x and y are both negative. First of all,

B may fall in A's projection, with probability a. Secondly, if this does not happen, an
intersection occurs if 4 > 0 - a, or if 4 < 3. Given that B does not fall in A's projection,

0 will randomly range from 2 to a - a. So an intersection occurs when 1P falls in a range

that varies between r to 2v and I - a to 2r, or 4 may fall in the range from 0 to 3.
Overall, the chances of this happening are:

Or + /3) + (f + / + a) *

2 2wr 2
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When we add in the chances of A's projection including B, we find that the total probability

of the projections intersecting is:

3r 280 a

4 r w2v

al is equally likely to fall in any of the four quadrants, so, averaging the four results

above, we find that the probability of projections intersecting when a < " is:

2w

Similar, tedious reasoning produces the same result when a >
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